Applications - Gigabit Ethernet - Fiber Channel - · Switch to Switch interface - Switched backplane applications - Router/Server interface - Other optical transmission systems #### **Product Features** - FP laser transmitter and PIN photo-detector - Dual Data-rate of 1.25Gbps/1.0625Gbps Operation - Up to 20KM transmission distance on 9/125µm SMF - Compliant with SFP MSA and SFF-8472 with duplex LC receptacle - Digital Diagnostic Monitor Interface - · Very low EMI and excellent ESD protection - +3.3V single power supply - Compatible with RoHS - Operating case temperature Commercial: 0°C to +70°C Extended: -10°C to +80°C Industrial: -40°C to +85°C #### General **SFP-2SM-0220** - SFP transceivers are high performance, cost effective modules supporting dual datarate of 1.25Gbps/1.0625Gbps and 20km transmission distance with SMF. The transceiver consists of three sections: a FP laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. Transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA. # **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | Note | |---------------------|--------|------|------|------|------| | Supply Voltage | Vcc | -0.5 | 4.0 | V | | | Storage Temperature | Ts | -40 | 85 | °C | | | Relative Humidity | RH | 0 | 85 | % | | Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the module # **General Operating Characteristics** | Parameter | | Symbol | Min. | Тур | Max. | Unit | Note | |----------------------|---------------|------------------|------|--------|------|------|------| | Data Rate | Ethernet | | | 1.25 | | Gb/s | | | Dala Kale | Fiber Channel | | | 1.0625 | | G0/S | | | Supply Voltage | | Vcc | 3.13 | 3.3 | 3.3 | V | | | | | Vcc | | | | V | | | Supply Current | | Icc ₅ | | | | mA | | | | | Icc_3 | | | 400 | mA | | | Operating Case Temp. | | Тс | 0 | | 70 | °C | | # **Electrical Input/Output Characteristics** | Parameter | | Symbol | Min. | Тур | Max. | Unit | Note | | | |---|---|--------|------|-----|---------|------|------|--|--| | Transmitter | | | | | | | | | | | Diff. input voltage swing 300 1800 mVpp 1 | | | | | | | 1 | | | | Tx Disable input | Н | VIH | 2.0 | | Vcc+0.3 | V | | | | | TX Disable Iliput | ١ | VIL | 0 | | 0.8 | V | | | | | Tx Fault output | Н | VOH | 2.0 | | Vcc+0.3 | V | 2 | | | | | L | VOL | 0 | | 0.8 | V | ۷ | | | | Input Diff. Impedance | | Zin | | 100 | | Ω | | | | | Receiver | | | | | | | | | | | Diff. output voltage swing | | | 400 | | 1000 | mVpp | 3 | | | | Dy LOC Output | Н | VOH | 2.0 | | Vcc+0.3 | V | 2 | | | | Rx LOS Output | L | VOL | 0 | | 0.8 | | 2 | | | #### Notes: - 1. TD+/- are internally AC coupled with 100Ω differential termination inside the module. - 2. Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7k to $10k\Omega$ resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V. - 3. RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES. # **Optical Characteristics** | Parameter | Symbol | Min. | Typical | Max. | Unit | Note | |-----------------------------|--------|---|---------|------|------|------| | Transmitter | | | | | | | | Operating Wavelength | | 1270 | 1310 | 1360 | nm | | | Ave. output power (Enabled) | Ро | -9 | | -3 | dBm | 1 | | Extinction Ratio | ER | 9 | | | dB | 1 | | RMS spectral width | Δλ | | | 0.26 | nm | | | Rise/Fall time (20%~80%) | Tr/Tf | | | 50 | ps | 2 | | Output Optical Eye | | Compliant with IEEE802.3 z (class 1 laser safety) | | | | | | Receiver | | | | | | | | Operating Wavelength | | 1270 | | 1610 | nm | | | Sensitivity | Psen | | | -22 | dBm | 3 | | Min. overload | Pimax | -3 | | | dBm | | | LOS Assert | Pa | -35 | | | dBm | | | LOS De-assert | Pd | | | -23 | dBm | | | LOS Hysteresis | Pd-Pa | 0.5 | | 6 | dB | | #### Notes: - 1. Measured at 10.3125b/s with PRBS 2^{31} 1 NRZ test pattern. - 2. 20%~80% - 3. Under the ER worst case, measured at 10.3125 Gb/s with PRBS 231 1 NRZ test pattern for BER < 1x10-12 - 4. If there is DWDM Product, the wavelength XX— CH 17-61 #### **Pin Definitions and Functions** | Pin | Symbol | Name/Description | |-----|--------------|---| | 1 | VEET [1] | Transmitter Ground | | 2 | Tx_FAULT [2] | Transmitter Fault | | 3 | Tx_DIS [3] | Transmitter Disable. Laser output disabled on high or open | | 4 | SDA [2] | 2-wire Serial Interface Data Line | | 5 | SCL [2] | 2-wire Serial Interface Clock Line | | 6 | MOD_ABS [4] | Module Absent. Grounded within the module | | 7 | RS0 [5] | Rate Select 0 | | 8 | RX_LOS [2] | Loss of Signal indication. Logic 0 indicates normal operation | | 9 | RS1 [5] | Rate Select 1 | | 10 | VEER [1] | Receiver Ground | | 11 | VEER [1] | Receiver Ground | | 12 | RD- | Receiver Inverted DATA out. AC Coupled | | 13 | RD+ | Receiver DATA out. AC Coupled | | 14 | VEER [1] | Receiver Ground | | 15 | VCCR | Receiver Power Supply | | 16 | VCCT | Transmitter Power Supply | | 17 | VEET [1] | Transmitter Ground | | 18 | TD+ | Transmitter DATA in. AC Coupled | | 19 | TD- | Transmitter Inverted DATA in. AC Coupled | | 20 | VEET [1] | Transmitter Ground | #### Notes: - 1. When high, this output indicates a laser fault of some kind. Low indicates normal operation. And should be pulled up with a $4.7-10 \mathrm{K}\Omega$ resistor on the host board. - 2. TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 10 K\Omega$ resistor. Its states are: Low (0-0.8V): Transmitter on (>0.8, < 2.0V): Undefined High $(2.0V \sim Vcc + 0.3V)$: Transmitter Disabled Open: Transmitter Disabled 3. Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. The pull-up voltage shall be between $2.0V \sim Vcc + 0.3V$. Mod-Def 0 has been grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID - 4. When high, this output indicates loss of signal (LOS). Low indicates normal operation. - 5. RD+/-: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. - 6. TD+/-: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. ### **Functional Diagram** # **Package Dimensions** # **Typical Interface Circuit** # **Diagnostics** | Parameter | Range | Unit | Accuracy | Calibration | | |-------------------|------------------------|------|--------------|--------------------|--| | Temperature | 0 to +70
-40 to +85 | | °C ±3°C Inte | | | | Voltage | 3.0 to 3.6 | V | ±3% | Internal/ External | | | Bias Current | 2 to 80 | mA | ±10% | Internal/ External | | | TX Power | TX Power -12 to -1 | | ±3dB | Internal/ External | | | RX Power -25 to 0 | | dBm | ±3dB | Internal/ External | | # **Ordering Information** | Part Number | Output Power | Rec. Sens | Data Rate | Wavelength | Distance | |--------------|--------------|-----------|-----------------|------------|----------| | SFP-2SM-0220 | -9 ~ 3 db | -22 db | 1.25/1.0625Gbps | 1310nm | 20km |